
J .  FltridMrch. (1991), vol. 224, p p .  49-76 

Printed in Great Britain 
49 

Linear and nonlinear barotropic instability of 
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(Received 30 March 1990 and in revised form 3 August 1990) 

The linear, weakly nonlinear and strongly nonlinear evolution of unstable waves in 
a geostrophic shear layer is examined. In all cases, the growth of initially small- 
amplitude waves in the periodic domain causes the shear layer to break up into a 
series of eddies or pools. Pooling tends to be associated with waves having a 
significant varicose structure. Although the linear instability sets the scale for the 
pooling, the wave growth and evolution at moderate and large amplitudes is due 
entirely to nonlinear dynamics. Weakly nonlinear theory provides a catastrophic 
time t ,  a t  which the wavc amplitude is predicted to become infinite. This time gives 
a reasonable estimate of the time observed for pools to detach in numerical 
cxperiments with marginally unstable and rapidly growing waves. 

1. Introduction 
Studies of waves in oceanic fronts and jets have traditionally stressed sinuous (or 

meandering) modes of motion. This emphasis is due in part to observations of 
formation of mesoscale eddies through detachment of meander crests and troughs. 
Perhaps the best known example of eddy formation associated with meandering 
motions is Gulf Stream ring generation (Richardson 1983). Observations of these and 
relatcd features have prompted study of ‘thin jet’ models (see Flier1 & Robinson 
(1984), Pratt  (1988), and references contained therein) in which restriction to  sinuous 
mode behaviour is made by suppressing variations in cross-stream structure along 
the axis of the jet. 

Recent attention has been drawn to features which exhibit varicose structure, i.e. 
width variations along the jet axis. One example is the warm outbreak (Cornillon, 
Evans & Large 1986), a detached eddy which originates from a bulge in the southern 
boundary of the stream. Also, varicose wave modes in idealized jets have been found 
instrumental in upstream influence and blocking (Pratt 1989 ; Armi 1989). Beyond 
their linear stability properties (Talley 1983a, b )  little is known about the finite- 
amplitude behaviour of varicose modes in mid-latitude jets. Pratt  et al. (1990, 
hereinafter referred to  as PECC), attempted to clarify the dynamics of warm 
outbreak formation by studying the nonlinear steepening and breaking of mixed 
(sinuous-varicose) wave modes in an equivalent barotropic jet. By restricting 
attention to piecewise continuous potential vorticity, the authors were able to 
formulate a finite-amplitude long-wave theory giving the signal speeds of constant- 
width values for the jet. Smaller widths propagated more rapidly than larger widths 
giving rise to  a nonlinear steepening phenomena. Numerical solutions based on the 
method of contour dynamics showed that the steeping waves could sometimes break 
and eject blobs of fluid resembling warm outbreaks. I n  addition to steepening, the 
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FIGURE 1. (a )  Plan view of the active layer in the 14-layer model. The three regions (I, 11, and 111) 
of uniform potential vorticity and separated by potential vorticity fronts a t  y = L,  and y = L,. 
( b )  Qualitative representation of the velocity profile for L,  = constant, L, = constant, and 
AL = L , - L ,  = 1. 

outbreak formation also relied on a barotropic instability which amplified mixed 
waves modes generated during the steepening. The presence of both processes made 
a clear understanding of the dynamics difficult. In particular, it was not known 
whether the instability alone could produce detached eddies. 

The purpose here is to gain a deeper understanding of the barotropic instability by 
treating it in isolation. We do so by considering a special case of the PECC jet for 
which nonlinear long-wave steepening is absent (all widths propagate a t  the same 
speed), a condition which can be created by imposing a particular potential vorticity 
distribution. Linear and weak nonlinear calculations (553 and 4) are made to 
determine properties of growing mixed waves, indicating possible space- and 
timescales for the eventual large-amplitude state. These calculations are sup- 
plemented by numerical solutions (§ 5 )  showing eddy formation. The eddy spacing 
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depends upon the mix of wavelengths present in the initial condition and is not 
necessarily determined by the length of the most rapidly growing linear wave ; both 
the phase and growth rate properties determine the outcome. We will also show that 
the ‘catastrophe’ time (that required for eddies to begin detaching) can be 
approximated using weak nonlinear theory. Although the latter is formally valid 
only for marginally stable waves, the predicted catastrophe time remains 
approximately valid for rapidly growing waves as well. Finally, we show that once 
the unstable waves grow past an amplitude threshold, the subsequent evolution and 
growth is due entirely to nonlinear dynamics. This result is demonstrated by 
interrupting the numerical integration and ‘linearly stabilizing ’ the solution, i s .  
adjusting a lengthscale so as to make the corresponding basic state stable. Despite 
this artificial deformation, the flow continues to evolve in qualitatively the same 
manner as the uninterrupted flow. 

The importance of the phase structure in determining eddy spacing, the success of 
weakly nonlinear theory in predicting the detachment time, and the insensitivity of 
the finite amplitude states to linear instability all have implications for forecasting 
of eddy detachment in the ocean. 

The basic velocity profile of the model, a geostrophic shear layer or alternate jet, 
is shown in figure l ( b ) .  The shear layer is a special case of more general jet-like 
profiles considered by PECC and is reminiscent of certain equatorial and deep 
northern Pacific (Warren & Owens 1988) flows. The focus on the special case is due 
to the absence of nonlinear long-wave steepening and the presence of symmetry 
properties which greatly simplify the (already arduous) weakly nonlinear calculation. 

2. The model 
Consider an equivalent barotropic, quasi-geostrophic flow on an f-plane. Denoting 

the mean thickness of the active (upper) layer by D, the actual thickness by D + h, the 
Coriolis parameter by f and the reduced gravity g‘, the quasi-geostrophic potential 
vorticity is given by (g’/fD) V*2 h* - ( f / D 2 )  h*. Let the latter have the constant 
values ( f / D 2 )  (0, - h:, 0 )  within the regions I, 11, and I11 shown in figure 1 ,  so that 

(Notice that D+h: is the region I1 layer thickness in the absence of relative 
vorticity.) The eastward and northward velocity components u* and v* are related 
to h* by the geostrophic relations 

fu*  = -g’h,*., (2 .2a)  

fv* = +g’h,*,. (2 .2b )  

Introducing the dimensionless variables 
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Equations (2.1) and (2.2) become 
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0 (Y > L A  
V’h-h = - 1  (L,  > y > L,), i 0 (y < LZL 

u = -hu, 

11 = h,. 

(2 .3)  

(2.4a) 
(2.4b) 

A simple example of a flow governed by (2.1) is the steady zonal state h = H ( y ) ,  
u = %(y), and v = 0 occurring when L, = -L,  = +AT, = constant. The solution 

where 
and 

sinh (y) I sinh ($AL) @(y) = lJ 

U =  T/(l+Y’) =+(l-e-AL), 
I’ = tanh ($A[,). 

(2.7 1 
(2 .8 )  

The velocity profile (drawn in figure 1 b for AL = 1 )  is antisymmetric. consisting of 
‘eastward ’- and ‘westward’-flowing cusped lobes with maximum speed U. In our 
scaled system of variables U depends only on the frontal separation &, as shown by 
(2.7). However, the dimensional value 

is proportional to  the potential vorticity jump h:. 
The flow described by (2.5)-(2.7) forms a basic state whose linear and weakly 

nonlinear instability will be examined. Also, we will wish to compute t,he large 
amplitude states which ultimately arise as a result of linear instability. The method 
of contour dynamics provides an algorithm for computing the evolution of L,(z, t )  
and L,(x, t )  to large-amplitude, highly contorted configurations given the initial 
values Ll(z,O) and L,(z,O). PECC have formulated the evolution equation for 
arbitrary (but constant) values of the potential vorticity in regions I, 11, and 111, and 
the equations governing the present case, obtained by setting the potential vorticity 
jump ratio (their r )  to unity, are 
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and KO denotes the modified Bessel function of zero order. Here (x,,L,) represents 
the position of a fluid parcel on the northern (n  = 1) or southern (n = 2) front and 
d/dt the Lagrangian derivative. The integrations are carried out along each contour, 
with dtn and dL(6,) representing differential increments in x and y. The equations 
can be solved by resolving each front using a finite number of Lagrangian points, 
evaluating the contour integrals numerically, and employing a time-stepping scheme. 
The procedure of PECC is employed here with adjustments to accommodate periodic 
boundary conditions, as described in Appendix A. The contours (fronts) are allowed 
to  become multi-valued with respect to x, but not to break. More sophisticated 
routines employing higher-order integration schemes and contour surgery are 
available and the reader is referred to Zabusky & Overman (1981) and Dritschel 
(1988), and references contained therein for further details. 

In  the development of the contour dynamical formulation, it is assumed the 
velocity is continuous across each front. Continuity of h (essentially the pressure) 
along with the geostrophic relations assures continuity of the velocity normal to  the 
front. Continuity of the tangential velocity component is assured by the specification 
of piecewise continuous potential vorticity ; discontinuities in the tangential velocity 
would imply delta function behaviour in the potential vorticity. Pedlosky (1990) 
discusses the matching condition a t  a potential vorticity front when the tangential 
velocity is allowed to be discontinuous. It is shown that the jump in tangential 
velocity remains zero if it is initially zero. I n  summary, our continuous velocity 
assumption is based on the continuity of h and on the assumption that (i) the 
potential vorticity remains bounded, or (ii) all motions originate from a state of 
continuous tangential velocity. 

3. Linear stability analyses 
Consider small departures from the basic state (2.5)-(2.7) by writing 

h =H(y)+~[q5‘O)(x,y,t)+~q5(~’(x,y,t)+ ...I, (3.1) 

u = @(y) - €[q5;) (x, y, t ) + €q5F) (2, y, t ) + * . . ] , (3.2) 

v = €[$k? (x, y, t )  + €@ (x, y, t )  + ...I, (3.3) 
L,  = $AL + “[Yp (x, t )  + €?p (2, t )  + . . -1, (3.4) 

(3.5) L , =-- ;AL + € [ T g ’  (2, t) + € T p  (x, t )  + ...I. 

VZq5(0) -q5‘0’ = 0. (3.6) 

To O ( E )  the field equation (2.3) becomes 

At y = L, and y = L,, continuity of h and u are imposed. These matching 
conditions are referenced to the undisturbed frontal positions through Taylor 
expansion of h and u about y = +$&. At y = +AL, for example, 

h = H ( i A L )  + €71 H,(&AL) ++?a; h,,(&iL) + . . . 
+ € [ q 5 ‘ O ’ ( x , S ~ , t ) + € l j l l q 5 ; ) ( X , S A L , t ) + ~ , r ; q 5 ~ ~ ( X , ~ & , t ) +  ...I 
+€,[q5‘1’(2,~AL,t)+€T1q51/1)(2,&hL,t)+ ...I 
+... (3.7) 
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where 
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(3.8) 7 = p )  n ( x , t )  + € r p ( X ,  t )  + € 2 r g ) ( X ,  t )  + . . . 
To O ( E )  the matching of h and u can be expressed 

S[$(O)] = 0 (y = *am), (3.9a, b)  

S[$;’]-?fo)S[@;)] = 0 (y = +ihL), (3.10a, b)  

where S[F]  denotes the north-to-south jump in F across the indicated value of y :  

S[F] = lim [F(x, y+a, t ) -F(z ,  y-a,t)]. 

In addition, Ln and h are related by the kinematic condition 

a+O 

($)h(X,LA = L,(x,t) (n = 1,2). (3.11) 

When the dependent variables are expanded as above, the O(c) approximations to 
(3.11) a t  each front are 

( 3 . 1 2 ~ )  

(3.12b) 

The linear-stability problem consists of seeking solutions to (3.6) of the form 

$ ( O )  = qY) eik(z-ct) + * , (3.13) 

v p  = uoN;) eik(z-ct) + * (n = 1,2), (3.14) 

where * denotes the complex conjugate of the preceding expression. 
Substitution of (3.13) into (3.6) leads to 

a 
-@-,u,@ = 0, 
aY2  

where 

and 

y = 2p ( U + c ) -  1 +exp (-2,uAL), 

N ,  = - 2,uy-’ exp ( -,u hL). 

Nl = (U-C)- l ,  (3.16) 

(3.17) 

The phase speed c can be obtained by substituting (3.15)-(3.17) into ( 3 . 1 0 ~ )  with 
the result 

(3.18) 
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FIGURE 2. Stability diagram with the shaded region representing unstable values of AL 
and ,u = (1 + k 2 ) i .  

For U-(  1/2p) < exp (-2pAL), c is pure imaginary, the solutions are stationary and 
exponentially growing in time. Using U = a( 1 - exp ( - AL)), the neutral boundary is 
given by 

1 -exp ( - AL) = p - l ( l  + exp ( - p  AL). (3.19) 

Figure 2 shows a plot of the stability boundary in (p, &)-space as given by (3.19). 
The shaded area indicates unstable waves. For fixed AL, the instability occurs in a 
band extending from p = 1 (long waves) to  a value p > 1. The width of this band 
decreases as AL increases ; as the distance between fronts increases, the wavelength 
must increase in order that  the growing modes sense both fronts. As A L + O ,  the 
bandwidth becomes infinite. Figure 3 shows a typical growth rate curve (kc,  vs. p) 
exhibiting marginally stable longwaves (kc, + 0 as k + 0) and a short-wave cutoff. 

The phase shift between fronts for an unstable wave varies with the wavenumber. 
For long waves (p = 1, c = 0) equations (3.16) and (3.17) reduce to 

indicating zero phase lag. Long waves therefore have a sinuous structure. At the 
short-wave cutoff, it can easily be shown using (3.18) that (3.16) and (3.7) reduce to 

so that the two fronts are phase lagged by 180". Marginally stable waves a t  the short- 
wave cutoff therefore have a symmetric or varicose structure. As p varies from unity 
to  its cutoff value, the crests of the south front lag those of the north front by an 
amount increasing from zero to 180". A few sample values of phase lag have been 
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Run 1 
(68.4) 

0 . 0 2 ~  (11.6) (163.8) 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

k 
FIGURE 3. Growth rate curve for AL = 0.5. The k and ke, values for the primary wave used in the 

numerical experiments are indicated along with the corresponding values of the phase lag 8,. 

labelled on the figure 3 growth rate curve, and the most unstable wave clearly has 
a mixed (sinuous/varicose) structure. Griffiths, Killworth & Stern (1981) found a 
similar phase structure in connection with ageostrophic instabilities of gravity 
currents. 

We note that the stationarity of long waves (c = 0) is a result that  can be extended 
to arbitrary large amplitude [see equation (3.8) in PECC]. The implication is that  any 
initial disturbance having gradual but large variations in L, and I,, remains 
stationary; no nonlinear steepening occurs. This result holds true only when the 
potential vorticity in regions I and I11 are identical. 

The symmetrical mode at the short-wave cutoff is central to our subsequent 
nonlinear analysis. Its structure is described by 

cosh puy 
cosh (& AL) +* (IYl < W)> (3.20) 

(3.21) 

(3.22) 
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4. Weakly nonlinear theory 
The disturbance described in the previous sect)ion will continue to grow 

exponentially until, at finite amplitude, the nonlinear interactions can no longer be 
ignored. I n  the present problem, the potential vorticity is uniform in each region 
which eliminates wave-mean flow interactions. The interaction which occurs is a 
wave-wave interaction. The growing wave first self-interacts producing a spatial 
second harmonic which subsequently reacts with the primary wave to affect its 
growth. I n  order to  ascertain whether this interaction is stabilizing or further 
destabilizing, we first consider a weakly nonlinear theory for the evolution. It is 
simplest to  imagine the problem formulated in the following way. 

Consider an initial disturbance with wavenumber k. Fix the dimensional width of 
the shear zone, 

Ah* = LT-L,*. (4.1) 

The we choose the deformation radius L,  = (g'D):/f to be such that 

is slightly in excess of that value K~ = (iAL), for which (3.19) is just satisfied. For 

K = K o + 8 K ,  8K < K ,  (4.3) 

the wave will grow slowly enough that a perturbation expansion pivoted about the 
neutral solution that obtains when 8~ = 0 can be constructed in which the time 
development of the wave amplitude is balanced by both the linear destabilization of 
O ( ~ K )  and the nonlinearity of In  the more realistic parameter settings discussed 
in the following sections a much broader spectrum of waves may grow. We emphasize 
that the present restrictive setting is chosen so that we may analytically investigate 
in a concrete fashion the role of nonlinearity in the wave development. Of course, the 
parameter setting described by (4.3) is certainly a consistent if restrictive one. 
Introducing a rescaled time 

T = s t ,  (4.4) 

we choose € = ( 6 K ) f .  (4.5) 

For the purposes of the perturbation series, it is useful to scale x* and y* with $U* 
so that the width of the shear zone in non-dimensional units always runs between 

- l < # < l ,  

whcrc $j = 2y* /AL*  = ( 2 / A L )  y. This means that as 

K = $ b  (4.6) 

is perturbed, the non-dimensional width of the shear zone in the y variable is 
perturbed since LD is changed. In  the y" variable, the width is fixed. 

In each region 
v2# - K2# = 0, 

K2 - K i  f 2Ko 6 K .  

( 4 . 7 )  

where now V2 = a2/agz +a2 /ax2 ,  while 

(4 .8 )  
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Continuity of each velocity component a t  the perturbed shear zone boundary 
implies that, i.e. a t  the upper boundary 

(4.9) 

is continuous, while for the zonal velocity we require thc continuity of 

84 a24 %( 1 + E q )  - E - = %( 1 ) + E y q + €2 -- + . . . - E - - € 2  - ay2 7 - . . . . (4.10) 
a4 a% a 2 % 7 2  

aY aY ag2 2 aY 

Each variable on the right-hand sides of (4.9) and (4.10) is evaluated at  d = 1. Similar 
continuity conditions are imposed at  d = - 1. 

The shear zone boundaries are calculated from the kinematic condition, i.e. a t  the 
upper frontal boundary 

(4.11) 

whose Taylor series expansion, similar to  (4.9) and (4.10) allows a sequence of 
problems to be formulated in which the 7, $ relation is remapped to y" = 1. 

The basic flow &(y"), noting the relation between jj and y is, 

sinh ( ~ g )  I sinh K 
%(Q) = u 

\ -exp(K(%+1)) (g< - I ) ,  

(cf. equation (2.6)). Note that a t  g = 1, for example 

(4.12) 

(4.13) 

so that the basic flow shear, which figures in the continuity requirement (4.10), will 
also have a K expansion. 

If $ and 7 are expanded in a series in E as in (3.1), (3.4) and (3.5) and the expansions 
are inserted into (4.7), (4.9), (4.10) and (4.11) (and their equivalents a t  y" = - l),  a 
sequence of linear problems obtains. With attention to the ordering relation = 
~ ( S K ) ,  the results of this problem sequence is as follows. At lowest order, the marginal 
wave with K = K~ is obtained, viz. in terms of jj 

coshP(g) +*  (ID1 < l ) ,  
cosh ,u I $(O) = A ( T )  exp (ikz) (4.14) 

[exp (P(Y"+ 1)) ( g  d - I ) ,  

where now fi2 = K2 + K i .  (4.15) 

The parameter ,u is further related t o  K~ by the condition that the wave, to  lowest 
order be neutral, i.e. that k be related to +hL (or K )  by (3.19). I n  current variables. 
this is equivalent to 

p (1 + tanhp) = KO (1 + coth K O ) .  (4.16) 
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The key feature of the analysis is that  the amplitudc, instead of being constant is 
an as yet unspecified function of the slow growth time 5”. The wcakly nonlinear 
theory provides an evolution equation for the amplitude of $(’) whilc its spatial 
structure is given by that of the marginal wave. 

A straightforward consideration of the higher-order problems yields thc following 
rcmdts. The next correction to the perturbation stream function is: 

( B e x p (  -,u(~-l))exp(ikr)+D,cxp(2ik.~)exp(-y(~-1)) (g  > i ) ,  

sinh ptj 
(1) - Bp exp (ikz) ’ -1 sinhp 

c“ sinhp dA 
%ik dT’ 

B(T)  = - ( 4 . 1 8 ~ )  

(4.18b) 
K ~ ( K ~  - y )  (1  + coth K ~ )  

Db(T)  = - 
2% KO (1 +cothKo)- y ( 1  + tanh y )  ’ 

K~ (1  + coth K ~ )  A 2  
2% 

D,(T) = Db + ( 4 . 1 8 ~ )  

This correction involves first a portion with the same wavenumber, k, as the 
primary wave but phase-shifted in g. This phase shift is proportional to the rate of 
changp of A .  The second part of $(l)  is the double-harmonic solution directly forced 
by the amplitude of the primary wave. 

When the problem is carried to next order, the interaction of the $(O) and $(l) 
solutions will produce forcing terms which would project resonantly on the linear 
oprrator for which $(O) is a solution. To render the c expansion valid, the terms which 
resonate with the linear operator must be constrained by insisting that they be 
orthogonal to the appropriate adjoint operator. Again, the details of the solution are 
straightforward and arc omitted. Thr resulting constraint yields the amplitude 
equation for A ( T ) ,  namely 

d2A SK 
-+ dT2 

k2 -p CFC, A + k2C, AIAI2 = 0, (4.19) 

where the constants C, and C, are given in Appendix B. The constant C, is related 
directly to the (imaginary) phase speed that obtains for slightly supercritical values 
of K .  The value of SKC, is, of course, negative. The important consequence of the 
weakly nonlinear calculation is the sign of C,. As shown in figure 4, C ,  is negative for 
all values of K ( =  4AL) implying that the effect of the wave-wave interaction 
involving the double harmonic of the fundamental is destabilizing. According to 
weakly nonlinear theory, the effects of nonlinearity are to accelerate the growth of 
the perturbation. Indeed, according to  (4.19) at, some finite time, T,, the amplitude 
becomes infinite. It is important t o  note that weakly nonlinear theory remains valid, 
although CI, < 0, until the ‘catastrophe’ time, T,. The rate at which the solution 
approaches the singularity occurring at that, time remains consistent with the scaling 
(4.5). The singularity is only ‘explosive’ on the slow timescale. By thcn the 

7 F1.M 224 
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K 

FIGCRE 4. Plot of C, as a function of K = @L. 

perturbation scheme on which (4 .19 )  is bascd becomes invalid, but it, is interesting in 
light of our numerical calculations reported below to calculatc T,. 

Let 

(T 

A =  10, 
e k  (-C,)f 

( 4 . 2 0 ~ )  

(4.20 6) 

where is the linear growth rate, in the original units of time, i.e. 

cr = k U (  - 8 K C , ) f ,  (4 .21)  

and the amplitude is measured in units such that the amplitude equation becomes 

~ = 0 + 0 3 .  
d 2 0  
dt2 

If (4 .22)  is solved subject to the part,icular initial condit,ion 

0 = 0, 

= 0, 
t = 0, 

d7 

(4 .22)  

(4 .23 )  

we are then following the evolution of the solution which at small amplitude consists 
solely of an exponentially growing wave with the linear e-folding rate. i.e. for small 
t ,  assuming 0, + 1 ,  the solution for 0 will go like 0, e'. The solution to (4 .22 )  and all 
subsequent time can be found in terms of elliptic functions. The principal result of 
interest is the time 7, for which 0 becomes infinite. We find 

(4.24) 
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where F is the normal elliptic integral of the first kind (Byrd & Friedman 1971). The 
modulus m satisfies 

while the argument a, is given by the relation 

2(1++@3: 1 

1+@;+(1+$@$ I ' sina, = 

(4.25) 

(4.26) 

If we consider the interesting limit where the initial condition is small enough so 
that initially the nonlinear terms are ncgligible, i.e. for 0, 4 1, we may easily find 7,. 
For example, if 0, = 0.1, then m = 0.9999969, a. = 84.26' and F (a,, m) - 3.1 
leading to 

(4.27) 

The time required for the solution to explosively reach large amplitude is thus 
about three linear e-folding times. The catastrophe of infinite amplitude in a finite 
time is entirely a nonlinear effect. I ts  occurrence in weakly nonlinear theory is a hint 
of what we shall subsequently observe numerically, i.e. that the development of large 
poolcd vortices is due fundamentally to the nonlinear development dynamics while 
the linear instability serves mainly to  sow the seed perturbations from which the 
vortices emerge by nonlinear interactions 

5. Numerical results 
Table 1 lists the vital statistics for each numerical experiment, including the initial 

conditions and information on numerical resolution. The majority of experiments 
were carried out using AL = 0.5, with a smaller number using AL = 0.25 and 
AL = 0.75. The growth rate curve for AL = 0.5 (figure 3) shows a maximum value of 
kci a t  k M 2.0 and a short-wave cutoff a t  k M 3.0. Initial conditions typically involve 
combinations of the most unstable wave (k M 2.0), its subharmonics (k z 1.0, 0.5, 
etc.) and a marginally unstable wave (k = 2.9). The domain of the numerical solution 
extends over one primary wavelength. 

5.1. The most unstable wave (k = 2) 

Consider the initial condition 

L,  = $AL + 0.02 sin (kz), 

L, = -+AL+O.O2sin ( k z + O , ) ,  

(5 .1~)  

(5.1 6 )  

with AL = 0.5, k = 2.0, and 0, = 1.19. These settings (labelled Run 1 in table 1) 
correspond to a small-amplitude wave having the maximum growth rate (an e- 
folding time l/kc, = 7.34). 

Figure 5 shows the evolution of the flow, with the shaded area representing fluid 
between the potential vorticity fronts. As a visual aid, two wavelengths of the 
periodic domain are shown. The lowest frame ( t  = 7.34) shows the flow after one e- 
folding time. The wave is structurally similar to the initial condition (not shown) 
with the wave crests L, lagging those of L,. The amplitude of each front has increased 
from 0.02 to  0.053, which corresponds to a growth rate only 2 % less than predicted 
by linear theory. 

3-2 
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Run 

1 
2 
2a 

2b 

2c 

2d 

3 

3a 

3b 

3c 

3d 

4 
5 

and 
5a 

6 
7 

~ 

AL 
0.5 
0.5 
0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 
0.5 

0.5 

0.25 
0.75 

k 8, NP dt 

2.0 1.19 20 0.367 
1.0 0.45 40 0.750 
1.0 0.45 40 0.750 

1.0 0.45 40 0.750 

2.0 0.45 60 0.5 

2.0 0.45 80 0.5 

2.9 2.86 21 0.7 

2.9 2.86 21 0.7 

2.9 2.86 21 0.7 

2.9 2.86 40 0.7 

2.9 2.86 40 0.7 

0.5 0.2 80 0.75 
2.8‘2 2.00 80 0.50 

1.31 0.642 
80 0.50 

3.70 1.16 20 0.3 
1.50 1.38 20 0.5 

te 
7.34 

13.15 
13.15 

13.15 

13.15 

13.15 

34.8 

34.8 

34.8 

34.8 

34.8 

38.9 
9.54 

9.54 

5.88 
9.44 

t,  

30k4  
57 * 2  
42*2 

4 2 f 2  

7 5 k 3  

6 0 f 5  

84k8 

co 

m 

63+4 

70 f 5 

105 f 5 
3 0 f 3  

3 0 f 3  

1 8 k 3  
3 5 f 3  

Comments 4 
30.1 
55.2 
41.2 

.55.2 

55.1 

72.1 

94.0 

94.0 

94.0 

!)4.0 

94.0 

120.6 
29.6 

Initial amplitude 
increased from 0.02 
to  0.06. 

Run interrupted a t  
t = 30 and L ,  and 
L, increased to  
4Ll and a,. 

Higher resolution 
repeat of run 2. 

Initial amplitude 
reduced from O.W 
to 0.005. 

shortwave cutoff 3.0. 

interrupted and L ,  
and I,, increased t o  
1.04 L,  and 1.04 L, ; no 
pinch-off occurred. 

but interruption 
occurred at t = 56. 

Same as run 3 but 
double resolution. 

Same as run 3a hu t  
resolution doubled. 

Initial k close to  

At t = -l2 run 

Same as run 3a 

Competition 
experiment using 
the two 
waves indicated. 

29.6 Same as run 5 but the 
shorter wave phase 
shifted hy amount 
x in x-direction. 

18.2 
34.9 

TABLE 1. Compilation of initial conditions (AL, k,, and O,,). number of nodes (M’) per Wavelength, 
and timestep (dt) for each run. The initial condition takes the form 

L ,  = $AL+O.O2sin (kz) 
L,  = -&5+0.02sin (kz+O,,) 

unless otherwise indicated. Also shown are the e-folding time ( t ,  = l / k c , )  for the primary wave. the 
observed pinch-off time t ,  and the catastrophe time t , .  

At t = 22.02 (three e-folding times) the shaded fluid has begun to pool and by t = 

26.42, the pools or eddies are roughly elliptical and rotate clockwise. Their spacing 
is equal to the primary wavelength, although their semi-major and semi-minor axes 
are shorter. The eddies are connected by filaments or strands across which the 
tangential velocity remains continuous. At t = 33.76, the convecting filaments 
contain virtually no mass and could probably be ‘erased ’ with no serious dpamical 
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L, at t = 7.34 
0 L, at r = 7.34 
0 L, at t = 22.02 
0 L, at r = 22.02 
A L, at t = 26.42 
x L, at r = 26.42 
V L, at f = 33.76 + L, at t = 33.76 

FIGURE 5. Run 1 : AL = 0.5, k = 2.0 (the linearly most unstable waves). Two periods are shown. 

0.9 - 

0.8 - 

0.7- 

0.6 - 

0.5- 

A" 
0.4- 

0.3 - 

0.2- 

A, 
0 A, 
0 A, 

Time 

FIGURE 6. Amplitudes A , ,  A, ,  and A ,  for the first three Fourier modes for Run 1 .  

consequences, allowing study of the disconnected eddies. Algorithms employing 
contour surgery are available for this purpose (Dritschel 1988), however, we have 
chosen to limit the scope of the present study to times preceding the 'catastrophe' 
of the initial detachment. 

It is instructive to compare the eddies of figure 5 with the finite-amplitude states 
found in the numerical experiments of PECC (in which the potential vorticity jump 
is weaker a t  y = L, than a t  y = Ll).  In  the latter, the unstable waves tended to break 
at y = L,  but not a t  y = L,,  resulting in filamentation and eddy detachment (see their 



64 L. J .  Pratt and J .  Pedlosky 

0.3 ! I I I I I I I I 

0 2 4 6 8 10 12 14 16 18 20 22 
Time 

FIGURE 7. Phase lag O1 for the first Fourier mode of Run 1 .  

figures 13-15). A fundamental difference between this and the present case is that 
nonlinear long-wave steepening exists in the former. In the present case, where long- 
wave steepening is absent, their eddies are generated by pooling of the middle region, 
actual breaking (multivaluedness of L,  and L,) occurring very late in the course of 
evolution, only after the eddies have formed. 

In  order to obtain some measure of the frontal structure as the wave grows to large 
amplitude, we have Fourier decomposed the north front according to 

(5.2) 
with a similar expression for the south front. The length of the periodic domain is 1 
and the amplitude and phase of the nth Fourier component are denoted by A ,  and 
8,. The representation (5.2) is used only as long as L ,  remains single-valued. 

Figure 6 shows the amplitude A,( t )  of the Fourier component having wavelength 
1 (in this case the linearly most unstable wavelength) and the amplitudes of the first 
two harmonics A,( t )  and A,(t). As shown in the figure, the primary wave dominates 
with some generation of harmonics occurring. 

The phase lag for the n = 1 Fourier mode, the value of 8, for the north front minus 
8, for the south front, is initially 1.19 radians. This phase shift is necessary for the 
wave to extract kinetic energy from the mean flow. Figure 7 gives the phase lag for 
subsequent times, showing it  to decrease but remain positive as the wave grows. 

L , ( x ,  t )  = tAL +A,(t) cos [7CL/Z + el] + A,(t) cos [27Cx/Z + 8,] + . . . , 

5.2. Subharmonics ( k  = 1 and k = 0.5) 

The initial (or ‘primary’) wave of Run 2,  k = 1, is the first subharmonic of the most 
unstable wave. The initial phase shift O1 = 0.45 is smaller than that of the primary 
wave, indicating a stronger sinuous structure. The growth rate is roughly half the 
value for k = 2. 

Since the primary wave will generate higher harmonics through nonlinear 
wave-wave interactions, Run 2 can be viewed as a competition experiment between 
the primary wave and its first harmonic (which grows more rapidly but has zero 
initial amplitude). As shown in figure 8, the overall evolution is similar to the 
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m L , a t t = 1 5  
0 L, at t = 15 
0 L, at I = 45 
0 L, at t = 45 
A L, at t = 60 
x L, at t = 60 
V L, at 1 = 70 
+ L, at I = 70 
0 L, at t = 75 
0 L, at t = 75 
IxI L, at I = 80 
H L, at t = 80 

FIGURE 8. Run 2 :  AL = 0.5, Ic = 1 (the first subharmonic of the most unstable wave). The 
solutions shown here are actually those of Run 2D, a high resolution repeat of Run 2. 

1.4 

1.2 

1 

0.8 

A, 

0.6 

0.4 

0.2 

Time 

FIGURE 9. Fourier amplitudes A ,  (the primary wave), A ,  (its first harmonic, the linearly most 
unstable wave), and A ,  (the second harmonic) for Run 2 .  

previous case, the shaded fluid pooling into detaching eddies. The primary wave 
dominates in the sense that there is only one pool per primary wavelength. However, 
some evidence of the first harmonic is present, one indication being the secondary 
bulge forming a t  t = 60 near x = 6. 

The Fourier amplitude A ,  for the primary wave and its first and second harmonics 
(A ,  and A,)  are shown in figure 9. The primary wave initially grows most rapidly 
owing to the fact that the higher harmonics have zero amplitude a t  t = 0. (According 
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L, at I =  15 
0 L, at I = 15 
0 L, at I = 30 
0 L, at I = 30 
a L, at i = 45 

L, at i = 45 x 

L, at I = 60 
+ L, at I = 60 
0 L, at I = 75 
0 L, at t = 75 

L,  at I = 90 

[7 L,  at I = I050 

IE3 L ,  at t = 90 

0 L, at t = 105 

FIGURE 10. Run 1: AI, = 0.5, k = 0.5 (the secvnd harmonic of the  linearly most unstable wave). 

to linear theory, the contribution tJo c?L/at by the nth Fourier component is A,(O) kc, 
exp[kc,t], and A,(O)  = A,(O) = 0.) By t = 50, bhc: first harmonic is growing more 
rapidly than t'he primary wave ; however? a cat,astrophc (eddy detachment') occurs 
before the former can overtake the lat,tor. 

A strikingly different picture emerges when k = 0.5 is selected as t>he primary 
wavenumber (Run 4). The competition is now between this wave, its first harmonic 
(k = 1.0, the primary wave of t,he previous cxample) and its second harmonic ( E  = 
2.0, the fastest. growing wave). As shown in figuro 10, the pools of shaded fluid a.re 
forming on a scale approximately a quarter of thr: primary wavelength (see thc t = 

105 frame). Modulation of the pooling process also o(:(:urs on a scale of half the 
primary wavelength. These pooling scales indicate influenoc of t,he fastest growing 
wave and its first subharmonic ( n  = 3 and n = 2). 

Fourier analysis of L,  for Run 4 indicates domination of the amplitude A ,  
associated with the primary wavelengt>h, as shown in figure 11. The amplitude A ,  
associated with the most unstable wavelength reaches a third the value of A ,  by t = 
105 and exceeds A ,  by only a small amount. The domination of n = 3 in the pooling 
process is a consequence of the latcral structure of the waves, as indicated by t3he 
north-to-south front. phase shift (figurc 12). The primary (n, = 1) wave initially has 
a small (0, = 0.2) phase shift and this strong sinuous -struct>ure persists as the flow 
evolves, the n = 2 and n = 3 modes init.ially have large phase shifts (0, = 0.15 and 
O3 = 1.19, respectively), indicating the stronger varicose component necessary for 
pooling. Although these phase shifts decrcasc at' later t,imes, thcy remain significantly 
larger than the n = 1 phase shift and the pooling thus occurs on the scales of n = 2 
and 71. = 3. 

These two calculations illustrate the importance of phase in determining thcb cdtly 
spacing. Although waves with a small phase shift may be associated wit,h the 1a.rgest 
frontal excursions, as in the previous example, their strong sinuous st.ruct,ure rules 
out pooling. Instead, shorter waves with larger phase shifts are responsible for the 
pooling and the 'catastrophe ' of eddy detachment. 



Linear and nonlinear barotropic instability of geostrophic shear 

0 . ~ ~ 1  

Time 

FIGURE 11. Fourier amplitudes A,  (the primary wave), A, (its first harmonic), and A, (its 
second harmonic, the linearly most unstable wave) for Run 4. 
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O n = 3  
-0.2 I I , I I 

0 10 20 30 40 50 60 70 80 90 
Time 

FIGURE 12. Phase shifts 01, 02, and 8, for first three Fourier modes of Run 4. 

5.3. Competition experiment 
A further demonstration of the importance of phase in determining the shape and 
spacing of the eddies can be made by initiating a competition experiment between 
two waves having equal growth rate. In  this case the initial condition is given by 

L ,  = ihL+O.OZsin (k,x)+O.OZsin (k,x+O,), 
L , - _ _  - !jAL +0.02 sin (k, x+ 0,) +0.02sin (k, x +  8, + 8,), 
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L, at I = 10 
0 L, at i = 10 
0 L, at I = 20 
0 L, at I = 20 
A L, at I = 30 
x L, at I = 30 

FIOUHE 13. Competition experiment between k, = 1.31 and k, = 2.62 with AL = 0.5 (Run 5). 
Both waves have the same linear growth rate ke, = 0.105. 

Time 

FIGURE 14. Fourier amplitudes A ,  (k = 1.31) and A, (k = 2.62) for the two primary waves 
of Run 5. 

choosing k, = 1.31 and k, = 2.62, with corresponding phase shifts 8, = 0.642 and 
8, = 2.00, gives two waves having the same growth rate (e-folding time = 9.54). 

The phase shift O0 of the first wave relative to the second is set to zero for the first 
case (Run 5, figure 13). Evidence of both wavelengths is present in the pooling 
occurring a t  t = 30. The Fourier amplitudes A ,  and A ,  for k ,  and k ,  remain 
approximately equal as the flow evolves (figure 14) but the phase shift for k ,  remains 
substantially less than that for k, (figure 15). In  other words, there is little energy 
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Phase shift, n = 1 
O n = 2  

:::pry 
0.2 

10 15 20 25 30 
Time 

FIQURE 15. Phase shifts 8, and O2 for the primary waves of Run 5. 

exchange between the two waves, and it is the stronger phase structure of the second 
wave that allows it, rather than the first, to determine the pool spacing. 

It is also instructive to vary the phase lag 8, of the first wave relative to the second. 
I n  Run 5a (figure 16), we have set 8, = x ,  so that the crests of the second (k,) wave 
are displaced by half its wavelength relative to the first example. The Fourier 
amplitudes and phase shifts for this case (not shown) are similar to those at Run 5 
and pools again form at the spacing 2 x / k ,  (figure 16). However, the orientation and 
staggering of the pools differs markedly from the previous case (figure 13). 

5.4. Weakly nonlinear case 
Continuing with initial conditions of the type (5.1), we now consider the setting k = 
2.9 lying just within the short-wave cutoff (k = 3.0). This weakly unstable wave has 
a strong varicose structure (6, = 0 . 9 1 ~ )  and should be governed at early times by the 
weak nonlinear theory ($4). 

As shown in figure 17, the flow develops into a series of detached eddies spaced at 
the primary wavelength. Since subharmonics of the primary wave are eliminated by 
the periodic boundary conditions, no faster growing linear modes are present. The 
detachment process begins a t  about t = 80, or about two and a half e-folding times. 
According to  (4.19) the time t ,  required for the amplitudes to become infinite is about 
three e-folding times. 

The significance of these findings is that  the flow is nonlinearly unstable (as 
predicted), that the qualitative nature of the catastrophe remains the same as in 
early calculations and that the catastrophe time is comparable to t,. 

5.5. Experiments with stabilized intermediate conditions 

We have seen that certain features of the finite-amplitude state such as the pool 
spacing can be explained using properties of the linearly unstable waves. One might 
ask whether the linear instability remains essential to the growth and evolution of 
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L, at I = 10 
O L , a t t = 1 0  
0 L, at t = 20 
0 L, at I = 20 
A L, at 1 = 30 
x L, at t = 30 

FIGURE 16. Run 5a: identical to Run 5 except that the two primary waves have been phase 
shifted an amount 8, = K in the z-direction. 

L, at I = 14 
0 L, at I = 14 
0 L, at I = 28 
0 L, at I = 28 
A L, at I = 42 
x L, at t = 42 
v L, at t = 56 
+ L, at I = 56 
0 L, at I = 63 
0 L, at I = 63 

FIGURE 17. Run 3c : AL = 0.5, k = 2.9 (marginally unstable wave). 

the finite amplitude states or whether growth and pooling is due entirely to nonlinear 
dynamics on a scale preset by the linear instability. 

Reconsider Run 3 (figure 17),  which satisfies the weak growth condition required 
by the finite-amplitude theory of 54. At t = 42, we interrupt the time integration and 
multiply L ,  and L,  by factor 1.04, a procedure equivalent to decreasing the 
deformation radius by factor 1/1.04. For the primary wavenumber k = 2.9 this 
distortion is sufficient to linearly stabilize the flow ; that is, wavenumber k = 2.9 is 
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W L, at I = 49 
0 L, at I = 49 
0 L, at I = 56 
0 L, at I = 56 
A L, at f = 63 
X L, at f = 63 
V L, at I = 70 
+ L, at I = 70 
0 L, at t = 77 
0 L, at I = 77 

* 
FIGURE 18. Run 3d: The initial condition is the same as Run 3c, however L,  and L, are 

magnified by factor 1.04 at t = 49. 

W L, at I = 7.5 
0 L, at I = 7.50 
0 L, at t = 15 
O L , a t t = I S  
A L, at I = 22.5 
x L, at I = 22.5 
v L, at t = 30 
+ L, at I = 30 
0 L, at I = 37.5 
0 L, at I = 37.5 

L, at I = 45 
H L, at I = 45 

FIGURE 19. Run 2b: The initial conditions are identical to those of Run 2 (figure 8). At t = 30, 
L,  and L, are magnified by factor 4.0. 

stable in a basic flow having AL = 1.04 x0.5. Figure 18 shows the subsequent 
evolution, beginning at t = 49. Although eddy detachment takes a bit longer ( tP  z 
70 as opposed to  t ,  z 63), the overall picture remains the same, indicating the 
dominance of nonlinearity in the growth and eventual pooling. 

The dominance of nonlinear terms a t  later times could have been anticipated on 
the basis of the amplitude evolution equation. As IAl grows the nonlinear term, being 
cubic, eventually dominates the linear term. 



72 L. J .  Pratt and J .  Pedlosky 

W L, at t = 10 
0 L, at t = 10 
0 L, at t = 20 
0 L, at t = 20 
A L, at r = 30 
x L, at t = 30 
V L, at t = 35 
+ L, at t = 35 

FIGURE 20. Run 7 : AL = 0.75, k = 1.5 (the linearly most unstable wave). 

A similar procedure was applied to Run 2 (figure 8). The values of L,  and L, were 
amplified by factor 4.0 at  t = 30, barely enough to linearly stabilize the basic state a t  
the primary wavenumber. The evolution of this highly distorted state (figure 19) is 
qualitatively similar to  that of figure 8, with the major pools spaced at  the primary 
wavelength and a secondary bulge forming near x = 6. The pools do differ in shape, 
higher wavenumber distortion appearing in figure 19. Although these differences 
may ultimately become important, the qualitative evolution from t = 30 to the 
initial catastrophe is due primarily to nonlinear dynamics. 

5.6. Other values of AL 
To determine whether the nature of the finite amplitude states remains qualitatively 
the same a t  different values of AL, Runs 6 (AL = 0.25) and 7 (AL = 0.75) were carried 
out. In each case, the values of k and 8, for the most unstable linear wave was chosen. 
Figure 20 shows the result for the case AL= 0.75. For this case and Run 6 (not 
shown), pools form a t  the primary wavelength in a manner similar to previous cases. 

5.7.  Catastrophe time 

According to weakly nonlinear theory, the excursions of the fronts become infinite a t  
a finite time t,. Since the frontal displacement 7 has been scaled by the small 
parameter E ,  the distance hL between fronts is essentially seen as infinite by the 
growing wave, and one might expect t ,  to approximate the time t, required for 
contact to occur between fronts. Since the weakly nonlinear theory is formally valid 
for marginally unstable waves, the most reasonable test of this idea is based on Run 
3c, for which the primary wave is slightly supercritical. For the initial amplitude 
used in this case, t ,  is about 2.7 e-folding times. The observed pinch-off time t x 63 
(table 1 )  is about 1.8 e-folding times. Thus weak nonlinear theory provides a 
timescale which moderately overestimates t,. 

In  Runs 1,  2, 6, and 7 ,  the eddies develop from growth of the primary wave. The 
initial amplitude for these runs is identical to  Run 3c. These conditions are similar 
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to those realized in Run 3c, and the values oft, range from 3.1 to 4.1 e-folding times. 
For Runs 5 and 5a, which involved two primary waves having identical growth rate, 
t, was 3.1 e-folding times. In  each case, weakly nonlinear theory appears to provide 
a reasonable estimate for the scale oft,. 

5.8. Necessary condition for Jinite-amplitude instability 

Dritschel(1988) has recently derived bounds on the mean displacements of potential 
vorticity contours from their undisturbed positions. For the two-front system 
discussed by PECC, the displacements ql and r,~, of the two fronts about their 
equilibrium positions are restricted by 

1 (AQl + AQ2 7;) dx = constant, 

where AQn denotes the potential vorticity jump across y = L ,  and h the length of the 
periodic domain. This constraint can be viewed as a necessary condition for 
instability, valid for large displacements of the fronts. The flow can be unstable (in 
the sense that the mean square displacements of both fronts increase with time) only 
if AQl and AQ2 have opposite signs. This necessary condition is satisfied in the 
present model (for which AQ, = -A&,) and is consistent with the observed 
amplitude. 

6. Conclusions 
It is now clear that instability can produce detached eddies or pools without the 

aid of nonlinear long-wave steepening. In fact, no cases have been found in which the 
linear instability fails to produce a train of pools, a result supported by our weakly 
nonlinear analysis predicting nonlinear instability for marginally unstable waves a t  
all values of AL. The explosive nonlinear instability seems to be a feature of other 
waves as well. When we interrupt the numerical runs a t  moderate amplitude and 
‘linearly stabilize’ the flow, the dominance of nonlinear dynamics is asserted by a 
subsequent evolution qualitatively similar to the uninterrupted case. 

One’s ability to predict the spacing and detachment time t ,  for the pools is 
somewhat dependent on the initial conditions. I n  runs where a single primary wave 
is present, the pools are normally spaced a t  the primary wavelength and t, is 
approximated by the weakly nonlinear catastrophe time t,. Exceptions can occur 
when the primary wavenumber lies far enough to the left of the maximum in the 
growth rate curve. I n  such cases, a harmonic of the primary wave may dominate the 
pooling process, relying on its stronger varicose phase structure. The only example 
considered here, Run 4, has a pool spacing of quarter of the primary wavelength. 
Somewhat surprisingly, the value of t, (2.69 times the e-folding time) is almost 
exactly equal to t, ( =  2.70). I n  competition experiments involving two primary 
waves of equal linear growth rates, the wave with the strongest varicose phase 
structure determines the pool spacing. 

Logical extensions of the present work include consideration of unequal potential 
vorticity jumps (i.e. the jump ratio T + 1 in the equations of PECC). For 0.2 < r < 0.6, 
a range argued by PECC to be appropriate to the Gulf Stream, the basic flow takes 
the form of a jet. Although this flow is linearly unstable, it is not known whether the 
explosive nonlinear instability is present and, if so, whether it is restricted to certain 
ranges in AL. A second obvious and important extension is to the case of an active 
lower layer. 
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Appendix A 
The numerical procedure used to integrate equations ( 2 . 9 a d )  is adapted from the 

one described in Appendix A of PECC. The PECC algorithm is designed for an 
isolated disturbance and can be adapted to the present periodic domain by making 
the following substitutions. In their equations (A 2) and (A 3), the terms I?), IF), I:), 
and IF) should be replaced by 

l N  zl“ = - ( x y  - { K O  [R;l)(xy - 1 * y ) ]  + K O  [Rj” (xp1 - I. y ) ] } ,  
2 1=1 j = 2  

1 - N  n 
1y = 2 c. c (xj1)-xj1),){K0[Ry ( x y ) - l . y ) ] + K o [ R y  (x j? - l*y ) ] } ,  

Zk“’ = $ c (xj2’-xjjl)l){Ko[Rj2) (xj2)-z.y)]+KO[R;*) (x;!)l-z.y)]}, 

l = - l j = Z  

l N  

1=1 j = 2  

f -N n 

I - N  n 

If) = c c (xj1)-xpl){K0[Ry (xj1’-l*y)]+K0[R;2’ (x;?l-l*y)]}. 
2 1=-1 j - 2  

These terms approximate the contour integrals in (2.9) over the periodic domains 
neighbouring the primary domain. Thc quantity Nis the number of periodic intervals 
resolved on either side of the primary interval. In the numerical runs performed here 
N =  3. All other notation is defined in PECC. 

The number n of Lagrangian points per periodic interval is kept constant in each 
run, although the points are periodically redistributed such that higher resolution is 
imposed in areas of high curvature. The point redistribution scheme is described in 
PECC. Values of n for each run are given in table 1.  

Numerical accuracy tests were performed using the initial condition specified by 
Run 1 in table 1.  With NP = 40, the initial growth rate differed from the value 
predicted by linear theory by only 2%. Runs with variable resolution were also 
performed (see Runs 2c and 3d in table 1 )  and thc changes in resolution were not 
found to yield qualitative changes in the solution. The only exception occurs when 
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the initial wave is marginally unstable, as in Run 3. In  this casc, insufficient 
resolution can prevent the wave from growing (see Runs 3a and 3d in table 1). Other 
accuracy tests are described in PECC. 

Appendix B 

are derivcd by the orthogonality condition described in $4. They are 
The constants C, and C,, which appear in the amplitude evolution equation (4.20), 

+A+- K KO +K,tanhp - (1 + cothp)], (B 1) 
,u cosh2p p 

4e2' c -  [X, + X, + X,], - p sinh2 2p 

x2 = [KOy(l -cothK0tanhy)+~,p(1-coth~,tanhp)-K~(1-coth2K0) 

The coefficient C, may be independently derived (and hence the machinery of the 
calculation subjected to unification) by expanding the expression for the phase speed 
C, given by linear theory, around the neutral point, viz. 

where ,u2 = ~ , + h ? .  

(B 4) for K = K~ + 8~ will yield 
At the neutral point K = K~ and p is related to K~ by (4.17). The expansion of 

The coefficient of the cubic term in A in the amplitude equation can only be 
attained by the perturbation method described in $4. As noted above, i t  is a very 
complicated function of the parameters K~ and 12. We have each independently 
calculated C, to  minimize the possibility of algebraic error. The result for C, is a t  
least consistent with the behaviour of the perturbation evolution obtained by our 
contour dynamical calculations. 
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